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TECHNICAL MEMORANDUM

COMPONENT RESPONSE TO RANDOM VIBRATORY MOTION
OF THE CARRIER VEHICLE

SECTION 1. INTRODUCTION

In this treatment of component response to local random vibratory motion of the
carrier vehicle, the component plus supporting structure is modeled as the system
shown in Figure 1. The component model is allowed two degrees-of-freedom, one
translational and one rotational, and is excited by a random translatory motion of the
base whose acceleration power spectral density (PSD), herein denoted by Gﬁ(f), is

presumed known. Prescription of the base acceleration PSD is done in the manner
indicated by the inset in Figure 2 which admits the analytical representation appear-
ing beneath the diagram of Figure 3.

Since the base motion is prescribed only to the extent that its acceleration PSD
is given, the "time response," i.e., a time history of the system configuration coor-
dinates and their first and second time derivatives, is out of the question. The word
"response" is here to be interpreted as "mean square response," that implying the
mean squares of the system coordinates and their time derivatives pertinent to the
frequency interval over which Gﬁ(f) is specified.

SECTION 2. FUNDAMENTAL RELATIONS

Whether interest lies in "time response" or "mean square response," the source
of certain fundamental relations, necessary to computation, is the system of differential
equations descriptive of the motion. Treating the component model as a perfectly
rigid body, invoking Newton and the principle of angular momentum, and making the
usual small angle approximations, the equations of motion may be written as equations
(1) and (2).

m':'{=—mg-K1(x—GST,I-Lle—u)-Cl(k—Dlé-ﬁ)
-Kz(x-GST’2+L29-u)-C2(X+Dzé-ﬁ) (1)
I'e'=K1L1 (x-<SST,1-Lle—u)+ClD1 (:’:-Dlé—ﬁ)
- K, L, (x - 8gp o+ Ly 6 -u) - CyD, (x + Dy 6-1) . (2)

Recognizing the simplifications possible via the relations (3), the conditions for static
equilibrium,




Ky 6gr,1 * Ky 8gyr o=m8 » Ky L;dgp =KygLydgp o (3)

one can write the matrix equivalent of equations (1) and (2) as

m 0] [x C, +C, c,b, - ¢,p, ] [%
+
o 1| |5 C.D. - C.D c.p.?+c.p.% |é
gDy - €Dy 1P Dy
K, + K, K,L, - KL, | [x c,* ¢, K, + K, i
+ -
) 2 9 i i
KL, - KL, KL?+ k0.2 e C,D, - C,D; KL, - KL, | |u

€

If the (y,6)-description of system configuration is preferred to the (x,6)-description,
then one has only to make the substitution x = y+u in equation (4) to get

m 0} ]y C,+C c,D, - C,D

2 279 171 y
+
o 115 C.D,- C.D, cC.p.2+c.p,2|]s
gDg - €Dy CyDy 2D

K1 + K2 K2L2 - K1L1 y -mu
+ = X (5)

KL, - K.L, K.L.2+xk.L.2|]6s 0

olig = Kby 11 olig

The transfer functions Tg/u(s)’ £ = x,y,6, essential to computation of the mean

squares of the system output variables, may be found by applying the Laplace trans-
formation to equations (4) and (5), assuming zero initial conditions, and solving for

the transform ratios &Z(£)/X(u), ¢ = x,y,8. (Obviously, it is not necessary to

apply the transformation to both equations (4) and (5) since one can choose to work
with either equation (4) or (5), then, having found either L (x)1Z(u) or Z(y)IZL(w),
find the other via the relation x = y+u.) As should be expected, the expression for

Te /u(S) as determined by equation (4) is equivalent to that determined by equation

(5), Thus,




T, (8 = {azz(s) [a,,(s) - ms?] - a%z(s) }/ A(s) (6)

Ty u(®) = - ms? 8,,(s) | A(s) (7

T, () = ms 2 a,5(s) | A(s) (8)
where

_ 2
all(s) = ms” + (C1 + C2) s + K1 + K2

alZ(S) = (CZDZ - ClDl) s + K2L2 - KlLl

(9

2
1

2 2
1t Kohy

2 2
azz(s) Is® + (ClD + CZD2 ) s+ KlL

A(s) = all(s) a22(s) - aiz(S)

Having found Tg/u(s)’ £ = X,y,0, it is an easy matter to find an expression for the
PSD of ¢, G E(f)’ by appealing to the well known general relation (valid for linear
systems and accepted here without dispute)

G0 =T, @i’ ® (10)

t/n

the symbol 7 denoting an output quantity of a system with input n. Obviously,

Gu(D = [T, @riplPe®m , r=xye . (11)

g/u

But, since it is Gﬁ(f) that is prescribed, not Gu(f), equation (11) will not completely

define Gg(f) until an expression for Gu(f) is found. To that end one can write

i(u)

s2 £

T, = X&) =
(u)

=L
-2
S



which, in conjunction with equation (10), yields

1
(21jf)*

2
Gu(f) =| ‘ Gu(f) (27f) Gﬁ(f) . (12)

It is important to point out that in equation (12) the dimension of G (f) is supposed

/Hz, thereby requiring that G. (f) have the dimension (in. /sec Y“/Hz, the use of
the tilde (~) serving to d1st1ngu1sh between G (f) and G (f), which has the dimension
g /Hz. In terms of Gu(f)

_ -4
Gu(f) =y f Gﬁ(f) (13)
where the numerical value of y is given by
= (386.08858)%/(2m?

it being assumed that the local acceleration due to gravity is 386.08858 (in./secz).

In a manner similar to that of arriving at equation (13), one can argue that
-2
. = !
Gu(f) y' £ G-ﬁ(f) . (14)
The dimension of Gﬁ(f) is (in./sec)Z/HZ and vy' is given by

= (386.08858/2m)2

Between Gu(f) and Gﬁ(f) is the obvious relation

_ -2
Gu(f) = (2 nf) Gﬁ(f) . (15)
Among other obvious relations are the following:

) - L&) &) E=x,y,0
PH® P g v

Tg/‘i(s) = TE/U(S) = TE/U(S) ’ £ = X,Y,O

o |2
Ge() = T, CmD[" G, £ =xy (16)




Gy(f) = (386.08858)° [T, (21if)|? G(f) an

oy |2
Go(f) = [T, ,,(2mD|" G, € =x,y,0 (18)

o2
Gg(f):[Tglu(%]f)[ G, , ¢=xy,06 . (19)

The numerical factor was introduced in equation (17) because, as mentioned before,
the dimension of G (f) is g2/HZ.

The most efficient sequence of instructions to be executed in computing the mean
squares and root mean squares of both input and output variables is the following:

1. Assign a value to f and compute Gﬁ(f) in accordance with the expressions
(defining the curve fit) appearing beneath the hypothetical plot of Figure 3.

2. Compute and store Gﬁ(f) in accordance with equation (14).
3. Compute and store Gu(f) in accordance with equation (15).

4. Compute and store G;C:-(f) in accordance with equations (16) and (17),

£ = Xx,y,6.
5. Compute and store Gé(f) in accordance with equation (18), £ = x,y,6.
6. Compute and store Gg(f) in accordance with equation (19), & = x,y,6.

7. Increase f by Af.

8. Repeat 1 through 7 until the frequency interval over which Gﬁ(f) is pre-

scribed has been covered. (In this paragraph f1 and fN will denote the
left and right extremes of that interval.)

9. Via some numerical integration scheme, compute the mean square of ¢,

denoted by ?Z(fl,fN) pertinent to the interval (fl’fN) in accordance with

f
— N
gz(flny) =[ Gg(f) af ’ £ = ﬁ’ﬁ,u’i,kyxv'é, 9,9,&,3},}7 . (20)
f1

10. Extract the square root of gz(fl,fN) to get the root mean square (RMS)
of &.

t4 E_: = ﬁ’ﬁ’u"}é’}.{’xyyys}’y’é’é’e .

)2 1/2
Erms T ) = {5 (fl’fN)}




In numerically evaluating the integral in equation (20), the author has found
that the simple trapezoidal rule gives satisfactory results, provided a wise choice of
Af is made; but, at this writing, can offer no failure proof method for selecting the
"optimum" value of Af in a given case. Usually, one relies on experience1 in deciding
the value to be assigned to Af.

To find the mean squares of u, u, and u it is not necessary to resort to any

numerical integration scheme since closed expressions are available for their computa-
tion. From Reference 1

.2 _ 1 )
CELR) = Y Toh: B, fex 141 GiEx i+’ ~ fEx,i Gilfex,i)?

1
(bi?&“l)
fEx,i+1
Y ¢ In| 7 , (1 <i < NSEG) (21)
i EX,i
(bi=‘1)
-2 _ 1 -1 1
LN CEDEEEDY BT {fEX,i+1 Gi(fEx i+ ~ fEx.i Gii(fEX,i)}
i
(b#1)
fpx 41
£yt Z c. Inf =212 , (1 <is<NSEG) , (22
i f .
i EX,i
(bi=1)
2 1 .- -3
w L) =y b3 { Ex.i+1 Silfex iv1? ~ fEX,i Gii(fEX,i)}
1
(b;#3)
fex,i+1
+y Z ec.Inf| —2] |, (@1 <i=<NSEG) . (23
i f .
i EX,1
(b=3)

1. A visual examination of the plot of G €(f) could be of some use in deciding whether

to pronounce a specific value of Af as satisfactory or unsatisfactory.




In equations (21), (22), and (23), the symbols fEX,i and fEX,i+1 denote, respectively,
the abscissa of the left extremity and right extremity of the ith straight line segment
in the log-log plot of Gﬁ(f), there being NSEG such segments (see Figure 3), and

f1 = fEX,l’ f, = fEX,NSEG+1' Notice that equations (22) and (23) have meaning
only if fN > f1 > 0, and further, that when Gﬁ(f) = W(gz/HZ) = a constant for

fl s f < fN’ equations (21), (22), and (23) become equations (21)', (22)', and (23)',
respectively.

2 _ _ \
G4, ) = W(Eyf)) (21)
a6 = v wey ' - £ h (22)"
2 _YW 3 .3

utf 5 = L (7 - £ (23)!

While dwelling on "closed expressions,”" mention should be made of the existence of
closed expressions for X, 6, 6, o, y, and y in the very special case wherein Gﬁ(f)

is constant? for 0 <f < «, In this case, it is not difficult, with the aid of the table
of integrals in Reference 2 (see also References 3 and 4, both of which cite Reference
2), to show that the mean square of &, pertinent to the semi-infinite frequency inter-
val (0,~), is given in closed form by

£2(0,w) = L?l {(Bg/AO) (AyAg - A A + Ay (Bi - 2 BB,)
+A(BZ—ZBB)+(B2/A)(AA-AA)} /{-AA2
1 By 183 3'8g) Ay ™ Redgd g 083
+A; (AAqs - AJA) } ., E=X,6,6,0,y,y , (24)

where W denotes the constant value of Gﬁ(f) and the numerical factor y* depends
upon which of the variables £ represents, that is,

1.0 if £ = ¥
Y* = .. )
(386.08858)2 if £ = 6,0,0,y,y

2. In the jargon of vibration engineers the base acceleration in this case is termed
"white noise."




The subscript £ on the right brace in the numerator of equation (24) serves to
indicate that the BK (K =0,1,2,3) are pertinent to the particular £ being dealit with.
The Ap (K =0,1,2,3,4) are the same for all &, Ay being the coefficient of S in the
system characteristic polynomial, A(S), defined by the last of equations (9). On
performing the indicated multiplications in equation (9) and collecting terms one will
find

= 2
A0 = K1K2 (L1 + L2)

2
1

2 2
+ CZDZ )

5
[

2
1 (C1 + C2) (KlL + K2L2 ) + (K1 + K2) (ClDl

-2 (C2D2 - ClDl) (K2L2 - KlLl)

2 2 2
g =M (K1L1 + K2L2 ) + 1 (K1 + K2) + C1C2 (D1 + D2)

2>
[

2

_ 2
A3 =m (ClDl + CZD2 ) + 1 (C1 + CZ)
A4=mI
Pertinent to x, the BK’ K =0,1,2,3, are
By =4y
B1=A1
B,=A, - m (K,L.2 + K.L.%)
2 2 171 272
B =

g =1 (C, + CZ)

Pertinent to 9, the B K =0,1,2,3, are

K’




o
|

K.L.)

= m (KoL, - KyL,

os}
|

3—m(CzD - C,D

2 - €Dy

Pertinent to é, the B K =10,1,2,3, are

K’
B0 =0
B1 =m (K2L2 - KlLl)
B2 =0
B3 =0

Pertinent to 8, the B K =10,1,2,3, are

K’

BO =m (K2L2 - KlLl)

B1=B =B, =0

Pertinent to ir, the B K =0,1,2,3, are

K>
By =0
By =m (KjLy? + KyLy")
B, =m (C,D.% + ¢,D,%
B3 = ml

Pertinent to y, the BK’ K =0,1,2,3, are

= 2 2
B0 =m (KlLl + K2L2 )



B1 =m (ClDl + CZDZ )
B2 = ml
B3 = 0 .

The structure of the transfer functions relevant to x, x, and y is such as to pre-

clude use of the referenced list of integrals to find ihe mean squares of x, x, and y.

Equations (1) through (23), plus attendant relations (Appendix A), constitute
the basis for program TRROBM (a mnemonic for "Translational and Rotational Response
to Base Motion") which has been operational since 1983. A recent revision of the 1983
version was made so that the program output would include items of importance to the
author in dealing with a related assignment. Before further comment regarding the
related assignment is made, the author would like to call attention to Table 1 which
shows the remarkably close approximations, afforded by equation (20), to the mean
squares F,2(O,oo), £=%x,6,0,0,y,y, whose exact values are determined by equation (24).
Below the table are the specifications defining the case which was processed by pro-
gram TRROBM to get the entries in the third column. The coding of program TRROBM
requires that the input include the items appearing in the left hand column of Table 2.
Consequently, when certain of the system parameters are "indirectly" specified, as in
the manner beneath Table 1, one must resort to some preliminary computation in
accordance with the equations of APPENDIX B to determine the numerical values of

¢c.,¢,, b, D,, K,, K,, L,, L, and I.

1’ 2’ 1’ 2’ 1, 2’ 19 2

Not shown in the list of input items in Table 2 are other input items which are
"implied" by the presence of Gﬁ(f) in that list and by the expressions for the curve
fit parameters under the diagram of Figure 3. These items include NSEG, fEX,i
(i=1,...,NSEG+1), NCORN, GCORN, and ADB(i,i+1).i=1,...,NSEG, all essential in
the computation of Gﬁ(f) for a given value of f. In program TRROBM the fEX,i
ADB(i, i+l) are embedded in the one-dimensional arrays identified by the FORTRAN
symbols FEX and DELDB, respectively. By mere inspection of the PSD specification,
one has immediately the input data designated NSEG, FEX, DELDB, NCORN, and

GCORN. Pertinent to the sample PSD of Figure 2 these items are

and

10




NSEG = 7

[t 1 [ 20.] ) i
EX,1 16
f 30.
EX,2 0
f 120.
EX,3 ‘6.
fex 4 210.
FEX = 2 = (HZ), DELDB = | o0 (DB/OCTAVE)
f 400.
EX,5 v,
fEx.6 480. .
fox .7 900.
| -12. |
fEX,SJ _2000._
NCORN =1 , GCORN = 0.15 (g2/HZ)

The choice of the combination NCORN = 1, GCORN = 0.15 was but one of several
available. The admissible combinations of NCORN and GCORN in this case are shown

in the following table.

NCORN 1 2 3 4 ) 6 7 8

GCORN | 0.15 | 0.32 | 0.32 { 1.0 | 1,0 | 1.7 | 1.7 | 0.075

It is evident from Table 2 that the entries in the second column of Table 1 are
not to be found among the items output by program TRROBM. Instead, they are the
output of a smaller program, an auxiliary to TRROBM (aptly named program AUXRBM),
which was coded only recently, in July 1986. It was long after the author had
developed program TRROBM and two similar programs3 that he learned, through
browsing the literature (References 2, 3, and 4 in particular), of the existence of
the table of integrals which served as a guide in writing equation (24) upon which
program AUXRBM is based. Neither was he aware, until he surveyed the literature,
that much of the work he had done in developing the two programs described in the

footnote had already been done years ago.

3. Program RESPBM (response to base motion) treats the single d.o.f. mass-spring-
damper system excited by the random vibratory motion of the base whose accelera-
tion PSD is prescribed as in this paper. Program RESBM2 deals with the randomly
base driven 2 mass-2 d.o.f. system, the two d.o.f.'s being translational.

11




Program AUXRBM, a sample output of which is given in Appendix C, provided
the numerical data necessary to the construction of the f;xmilies4 of curves in Figures
4 through 11. The data could have been generated by program TRROBM but at a
greater cost of computer time, not to mention the slight inaccuracies in the data due
to the necessity of restricting the mean square computation to a finite frequency
interval whose left extremity must be positive. The use of the word "inaccuracies”
tends to unjustly discredit program TRROBM. In defense of TRROBM the author
should point out that even in those cases wherein Gﬁ(f) is constant, which is the only
kind of case to which AUXRBM is applicable, there is hardly a discernible difference
between the plots5 of RMS's made from the output of TRROBM and those made from
the output of AUXRBM (a‘fter the numerical values have been rounded to at most
three significant digits and plotting is done using the same scales for both sets of
output). The author has made this assertion on the assumption that, in processing
a case by TRROBM, a wise choice of Af is made, and further, that a sufficiently

6

wide~ frequency interval is used in the mean square computation. As support of his

assertlofl, the auth.czr invites the reader to compare the values of eRMS’ eRMS, eRMS’
YrMs® YRMS® and XpMS found among the items of the sample TRROBM output in
Appendix D with the appropriate encircled values or inset tabular entries of Figures

6 through 11.

The source of the RMS's in Figures 12, 13, and 14 was program TRROBM. In
each of these figures the prevailing conditions are the same as those pertinent to the
encircled points of Figure 6. The previously cited tables of integrals, and hence,

-2 2

program AUXRBM, were of no utility in the computation of xz, x~, and y because,

as mentioned in a previous paragraph, the rational functions

1

1
Txi(® =5 Txp'®)

4. For the purpose of comparing the behavior of the plotted function, as depicted
by the solid curves, with its behavior under slightly different conditions, some
of the figures have either an inset table of values or encircled values of the
function corresponding to the changes in system parameters.

5. Plots of RMS's versus re (holding ry constant).

6. Confining the mean square computation to the interval (1., 2f2c) results in
excellent approximations. -




and
Tii/ﬁ(s) = Ty/u(s)

do not have the requisite structure. The first thing one will notice about these figures
is that no attempt has been made to draw a "best fit" curve through any of the

several sets of points, the reason being an insufficient number of points to accurately
determine the behavior of the variable plotted.

All of the programs described in this paper are coded in FORTRAN V for a
punched card machine (one of the UNIVAC series in particular). However, one with
the expertise can translate the FORTRAN language into that of another computer.

A fellow employee7

here at MSFC has, in fact, already effected the translation of pro-
gram RESPBM, described in one of the footnotes, into TEKTRONIX language (models

4051, 4052, and 4054).

When the author was approached by his supervisor with questions about the
mean values of sys’cem8 kinetic energy, potential energy and energy dissipated, his
first thought was of the system coordinate velocities whose mean squares are not a
part of the output9 of the 1983 version of TRROBM. It was the need for the mean
squares of the coordinate velocities, as well as yPZ (whose need will become apparent
later), that prompted the 1986 revision of the 1983 version of TRROBM. In response
to the questions asked, the author has developed the following expressions for the
mean values of the kinetic energy (KE) and potential energy (PE), the symbol E in

E(gf) being the familiar expectation operator or mean value operator.

E(K.E.) = % (m "‘izzms + 1 éfws)
m wz » I w2
_ nx _2 ne 2 1 _ 2 .2
MPE) == Yrws " 77 %ews T 7Ly Kotz KilD) Oprus T YRus
2 .2 1 2 2
Lp %gms) * 3 Ky Sgp,1 * Ky 857, 9)

-3

Pat Lewallen, ED24.

8. See Figure 1.

9. When the work which culminated in the 1983 version of TRROBM was done, interest
was primarily in accelerations and displacements.

13




The definitions of “’121 > “)1216’ yp, and L, are given elsewhere but are repeated here.

X
w? = (K, +K,)) /m
nx 1 2 i
2 _ 2 2
(une—(KlL1 +K1L2 ) /1 ’

Vp = displacement of arbitrary point P (not the CM) relative to the base

L, = lateral distance of point P from the CM, positive or negative according
as point P is right or left of the em .

The expression for E(PE) was derived on the assumption that the mean value of u,
the base displacement, is zero, and that the zero level for gravitational potential
energy is the static equilibrium level of the CM. Assuming further that D1 = D2 =D
and C1 = 02 = C, it is not difficult to show that the mean value of the rate at which
energy is dissipated through viscous damping is ZC(&?{MS + D2 égMS)' Development
of the expressions for the mean values in this paragraph was the "related assignment"

alluded to earlier.

—

Attention is now called to Figure 4 wherein the symbol {5&2(0,00)} 0= 0 denotes
the mean square of x (for 0 < f < =) when component rotation has been suppressed
entirely by enforcing the relations K1L1 - K2L2 = 0 and ClDl - CZDZ = 0 so that ©
is identically zero (provided 6 and 6 are initially zero). A cursory examination of
this family of curves reveals that suppressing rotation merely serves to increase the

mean square of X (otherwise, the plotted mean square ratios would be greater than
one).

It is evident in Figure 5 that for some combinations of re and Ty which admit

rotation, the mean square of y is larger than it is when there is no rotation while
for other combinations it is smaller.

Figures 6 through 11 show whether the imposition of the conditions {D1 =D
Di # Li’ i =1,2} instead of {Di = Li’ i = 1,2}, other conditions being the same,
results in an increase or decrease in the RMS of the response variable in question.
These figures, when complemented by the output of TRROBM plotted in Figures 12,
13, and 14, provide the RMS's of the system coordinates and their first two time

2’

14




derivatives for both the (x,6) and (y,6) descriptions of system configuration. This
collection of figures does not represent an exhaustive parameter study, but is
exemplary of parameter studies made possible by program TRROBM (with or without
the support of its auxiliary AUXRBM, which is of limited application).

At least one paragraph should be devoted to stability, if only to go so far as
to write the conditions (on the system parameters) whose satisfaction guarantees
system stability. Such conditions are indirectly realized by conditions on the coeffi-

4 .
cients of the system characteristic polynomial, A(S) = Z AiS1 [see equations (9)],

i=0
those conditions being available via the Routh-Hurwitz criterion. The Routh-Hurwitz

array pertinent to A(S) is the following:

ROW

0 | &, A, A,
1 A, A,
. Aghy - AgAy A

A, 0

A(AA, - AA) - AA,2

5 1(Aghg - AjA, 03

Aghy - AgAy
4 A,

By the expressions defining them, A 4’ A3, and A0 are intrinsically positive. Hence,
by the Routh-Hurwitz criterion for stability, system stability is assured if the other
two elements in the first column of the array are positive, or, equivalently, if both
of the inequalities

A

A2,

ghg > A4, A(AjAg - AjAY > AjAg

0

are satisfied. The problem of assessing the "degree" of stability will not be addressed
in this paper. The technique for handling the situation wherein a left column element
is zero will be found in the literature.

15




The author has given some thought to models other than that of Figure 1,
those of Figure 15 in particular, which, in certain cases, could be more "credible" or
"plausible"” models. Though there is slight difference between the "appearances" of
the models in Figures 1 and 15-a, that difference due, obviously to the elastically
supported dampers in Figure 15-a, there is a marked difference between the respective
mathematical descriptions of model motion. While the differential equations governing
the motion of the model in Figure 1 are of second order, those determining the motion
of that in Figure 15-a are of third order.

Pertinent to Figure 15-a, the author has derived the following equations.

m(y+i) = ~ (K; + K,)) y + (K;L; - K,Ly) 6 - C; (7 - D8) - C, (¥ + Dyo)
C]_ .
t L f1%-mD, (§+) + (KL, - KL, - Dy (K; + K1 ¥
K,(D,+D,)
1{D1*Dy
+ (KL% + KL% + Dy (KL, - KoLyl é}
+——— - 190-mD, (y +u) - [K,L, - K,L, + D, (K; +K,)]
K(D+D){ 1 olig = Kqly + Dy (By + Ry
2(D1*Dy
- [K,L,%2 + K,L,%2 - D, (K,L L)1 ¢ 25
11 glg "~ Dy (Kqly - Kplpdl @ (25)

e _ _ 2 2 . . _ N .
I 6= (KL, - KLy y (K L," + KoLy™) 6 + CD; (y - Dy6) - C,D, (y + Dy6)

C.Dq .
- — {Ie—sz(y+u)+[K2L2—K1L1-D2(K1+K2)]y
K,.(D,+D,)
1{P1*D,
+ [K.L.2 + K.L.2+D (KL-KL)]é}
15 olig g (KyLy - Koly
CoDy - .
to—="— - 1§-m D) (F+i) - [KyL, - KLy + Dy (Kq + K] ¥
K. (D.+D.)
9(D1*Dy
- [K{L,2 + K.L.2 - D, (K., - K.L)] 6 (26)
1“1 1o 1 (Bqly - Koby .
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Notice that if one makes the substitution x = y + u and allows El and Ez to become
infinite, equations (25) and (26) become, in view of relations (3), the equations of
motion of the model in Figure 1 pertinent to the (x,6) description of system configura-
tion, the equivalent of the matrix equation (4); or, if one merely permits Rl and f{Jz

to approach infinity, equations (25) and (26) become the equivalent of equation (5).

Considerable simplification of equations (25) and (26) is realized in the special
1=Ky = K, C
equations (27) and (28).

case wherein K 1= C2 =C, K1 = K2 = K. In that case they read as

mC ot my+2c1+X y+2Ky+c[D2-Dl+§(L2-L1)]é

K K K
+K(Ly-L)e="2C% _my (27)

K

IC vir1s+c|p.2+p2+8 @w?+1.h]o+K (L.2+1.%) 0

= 1 2 t = Iy 2 1 2

K K
+cfp,-p, + 2w, -Ly|ly+ K@, -LYy=0 (28)

2 17 o I 2 1’y .

Having written the equations of motion, the next step toward a mean square computa-
tion is the deduction of the relevant transfer functions. Pertinent to the system
comprised of equations (27) and (28), it is easily deduced that

6

6

~ RSk ~

Tyuts) = ) B; S/ 2 A S
i=0 i=0

(29)

4 6
Tou(® =27, 8 /3 &S
i=0 i=0

where

17
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>

% ¢

>

2 2
K (L1 + Lz)

2 2 _ - -
+D (D, - D) (L,

ZKC[D1 9

2
L1)+L1 + L

mK L2+ +2k1+2c2f1+E) p2+p2+K
1ty 1 2 T %

2
2 K !
-C [Dz - D+ = (L2 - I'l)

K
mKC ;2,12 ,2KC1 o ofp2, 2,
= 1 2 —= 1 2
K K
+2IC(1+§)
K
m 2 2 2 K .. 2 2 1 ¢c?
B D2+ D2+ (L + L5 [+ mI+ 22
K K K
2mIC/I~(
mICz/ﬁ2
By = 0
2 2
-m K (1% + L,
2mCK 12,102 ¢ (p24p.2
= 1 2 1 2
mci[. 2 2 K .. 2 2
=— D" * Dy +:(L1+L2)]-ml
K K
-2mCI/K
—mICZI'i’(2

=R
~
=
[
Do
+
=
[\V]
(S
~r’
| WG |

(31)



It

Y1=0

Y2=mK(L2-L1)

(32)
=~ _2mCK
K
~ _m c? K
y4=—~—[D2-D1+:(L2—Ll) .
K K

Imposition of the additional conditions D1 =L, and D, = L2, as in Figure 15-b, results
in a simplification of equations (27) through (32). Further simplification is possible
by setting K = K.

Upon examining the structure of the transfer functions in equation (29), along
with that of the five Laplace transform ratios

L(y) L g

Ziy "5y ®

L)

(i

8

~~
] D
A d

o
~
o
N’
|
mNIH
3
[an]
Nl
-l
~~
7]
A

[~
D -
N | N’

R;M

7~~~

[et Ko}

o |
14

@

S—

[«

~~

4]

A

it is evident, in light of the table of integrals previously cited, that the mean squares
52, E=y, ¥, 0, é, 8, are expressible in closed form when Gﬁ(f) is constant for

0 < f < «, In the notation of this paper, the closed expression for gz is
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2 _ YW g 2 = 2 S & 52,83 5 &

¢9 = J7— B."ng+n; (B,” - 2BgBy) +n, (By'- 2B,B, + 2 ByBy)
6

;2

2
(B4

- 2BBy) +ng B2}, (33)

~2 e~ A~ ~ o~
+n3(B2—2BB +2BOB4)+n (5

173 4

g = y’y"e’é,.e.

the significance of the factors y* and W being the same as in equation (24). The
constant W, incidentally, is herein assumed to have the dimension g2/HZ. The sub-
script £ on the right brace in equation (33), as one should expect, indicates that
the Ei’ i=0,1, ..., 5, are associated with the & in question. The ;‘i’ i=0, 1,
..., 6, are given by equation (30) while A6 and the n,, i=0,1, ..., 5, are defined
by

_ 1 7 Y x
6
_ A X 2_ A A X (XX _ % %
n1 = A0 (A3 A1A5) + A1 (A1A4 A2A3)
n2=A0A35+A1 (A1A6-A2A5)
ng = A5 (AOAS - A1A4) + A1A3A6
n, ==+ (A, n, - A, n, + A, n,)
4 ~ 2 '3 4 2 6 1
A
0
n=—l—(Kn-Kn+K n,)
5 X 2 4 4 3 6 2
0
A6=A0(A1n5-A3n4+A5n3) .

fade

Pertinent to y the Bi’ =0,1, ..., 5, are given by

42 i=0,1,2,3,4 [the Ei’ i=20,1,...,6, are given by equations (31)]




Pertinent to fr R

~

Bi = 841 -

Pertinent to .6',

-~

i =Yy »1=0,1,2,3,4 [the ;i’ i=0,1,...,4, are given by equations (32)]

o I}

B = vjyg

B 3 =B 4= B5 =0
To date, no attempt has been made to code a program based on equations (25)
and (26) or any of their simplified forms. Programming, on the part of the author,

has been pursued only so far as programs TRROBM and AUXRBM, which mark the
culmination of the author's effort in this area.
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TABLE 1

8V
[ 8]

£ £2 (0,) £2 (1., 2f, ) Percent Error

.. 3 2 3 2

X | 107 (0.78567859) (g“) 10° (0.78498616) (g“) 0.088

o 4 2.2 4 2.2

6 | 10® (0.20118432) (rad./sec”) 10 (0.20111040) (rad./sec”) 0.037

6 | 1071 (0.50960584) (rad./sec)? | 1071 (0.51124543) (rad./sec)? 0.32

-4 2 -4 2

o | 107% (0.12217110) (rad.) 10”4 (0.12244709) (rad.) 0.23

: 3 . 9 3 . 2

v | 10 (0.29642678) (in. /sec) 103 (0.29412964) (in./sec) 0.77

v | 1073 (0.75068497) (in.)2 10”3 (0.75001788) (in.)2 0.089
VIA EQ. (24) VIA EQ. (20)

SPECIFICATIONS:

G, (D) = 0.1 (g%/HZ) , 1 < f < 200.0

Kl/K2 = 1., CI/C2 = 1., Dl/D =1., ¢z = Ly = 0.01, fnx = 100. (HZ),

VALUES OF 1, Kl’ KZ’
SPECIFICATIONS):

Cl’ Cz,

2

I = 25. (lb.*sec“*n.)

K, = K, = 10° (0.19739209) (1b/in.)

C, = C, = 10 (0.62831853) (1b/(in./sec))
D, = D, = 10 (0.15811388) (in.)

L, = 0.39223221 , L, = 0.58834841 (in.)

Dl’ D2’ Ll’ L2 (ENFORCED BY THE




TABLE 2

PROGRAM TRROBM

Program Input

Program Output*

G{i(f)
Af

(£,,f)

f
G (D)
g% (£,,£9) ) = u,u,u,X,X,X,6,6,6,¥,¥,¥,¥p:Vp:Vp

(£,,6)

/

grms

Modal Column Corresponding to fic , 1i=1,2

nx

neé

o 12
T, ;u(2mD [, & =x6y.yp

* A print of all tabulated functions of frequency is optional
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DEFINITIONS

C. Damping coefficient [lb/(in./scc)] of viscous damper i, i = 1,2

D. Lateral distance (in.) between CM and point at which damper i is
attached to model, i = 1,2 (Di > 0)

ry D1/D2

f Frequency (HZ), fl < f < fN

ic Frequency (HZ) of undamped coupled natural mode i, i = 1,2

fnx Frequency (HZ) of undamped uncoupled translational mode
fne Frequency (HZ) of undamped uncoupled rotational mode
g Acceleration due to gravity (in./secz)
G () PSD or 4 (g2/HZ)
G () PSD of U [(in./sec)?/HZ]
G (f) PSD of u (in.2/HZ)
G::(f) PSD of X (g2/HZ)
G, (f) PSD of x [(in./sec)?/HZ]
G, () PSD of x (in.Z2/HZ)
G (D) PSD of § [(rad./sec?)?/HZ]
G (D) PSD of 6 [(rad./sec)2/HZ]
G () PSD of 0 (rad.2/HZ)
Gy () PSD of ¥ (g2/HZ)
Gy () PSD of y [(in./sec)2/HZ]
Gy PSD of y (in.2/HZ)
Gy (1) PSD of vy (gz/HZ)
¥p
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e(fl,fN)
rms(f N)
(fl’fN)
(£, 1)

rms

w2
A CHR A

(£1.6))

< < <

VAR XY
rms(f fN)
NAlCHR N
YemsF1 )
2t 80

rms(f fN)

PSD of ¥, [(in./sec)?/HZ]
2
PSD of Yp (in."/HZ)

Angular displacement (rad.) of model from static equilibrium
orientation

Angular velocity (rad./sec) of model

Angular acceleration (rad./secz) of model

Mean square value (rad.z) of 8 in the interval (fl’fN)

Root mean square (rad.) of 6 on the interval (fl’fN)

Mean square value, (rad./sec)z, of 6 on the interval (fl’fN)
Root mean square (rad./sec) of 6 on the interval (fl,fN)
Mean square value [(rad./secz)zl of § on the interval (fl’fN)
Root mean square (rad./secz) of 6 on the interval (fl’fN)

Displacement (in.) of model CM relative to the base
Velocity (in./sec) of model CM relative to the base

Acceleration (in./secz) of model CM relative to the base
Mean square value (in.2) of y on the interval (fl’fN)

Root mean square (in.) of y on the interval (fl’fN)

Mean square value, (in./sec)z, of y on the interval (fl’fN)
Root mean square (in./sec) of y on the interval (fl,fN)
Mean square value (gz) of y on interval (fl’fN)
Root mean square (g) of ¥ on the interval (f1,£))

Displacement (in.) of point P relative to the base

Velocity (in./sec) of point P relative to the base
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'jP Acceleration (in./secz) of point P relative to the base
yPZ(fl,fN) Mean square value (in.z) of yp on the interval (fl’fN)

yP,rms(fl’fN) Root mean square (in.) of yp on the interval (fl,fN)

}'rpz(fl,fN) Mean square value, (in./sec)z, of S’P on the interval (fl’fN)
jrp rms(fl’fN) Root mean square (in./sec) of irp on the interval (fl,fN)

SiPz(fl,fN) Mean square value (g2) of S}P on the interval (fl’fN)
§P rms(fl’fN) Root mean square (g) of §P on the interval (fl,fN)

GST i Static deflection (in.) of spring i, i = 1,2 (considered positive
’ despite my sign convention)

©ie 21rfic (rad./sec), i = 1,2

Af Both the print step (HZ) and the frequency increment (HZ) used
in the numerical evaluation of the definite integrals defining the
mean squares

u Displacement (in.) of the base from its static equilibrium position

u Base velocity (in./sec)

u Base acceleration (in./sec?)

uz(fl,fN) Mean square value (in.2) of u on the interval (fl,fN)

urms(fl’fN) Root mean square value (in.) of u on the interval (fl,fN)

flz(fl,fN) Mean square value (in./sec)2 of U on the interval (fl’fN)

{lrms(fl’fN) Root mean square value (in./sec) of u on the interval (fl’fN)

ﬁz(fl,fN) Mean square value (gz) of u on the interval (£f,,£)

ﬁrms(fl’fN) Root mean square value (g) of u on the interval (fl’fN)

X Displacement (in.) of model CM from its static equilibrium position
(x is an absolute displacement)

X Absolute velocity (in./sec) of model CM
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EIH

2

ers(fl’fN)

(£, 1)
rms(f N)

X (fl’ﬁn)

rms(f fN)

T, g C2nt |2

T, 2t |2

Absolute acceleration (in./secz) of model CM
Mean square value (in.z) of x on the interval (fl,fN)

Root mean square (in.) of x on the interval (fl’fN)

Mean square value (in./sec)2 of x on the interval (fl,fN)

Root mean square value (in./sec) of X on the interval (fl,fN)

Mean square value (gz) of X on the interval (fl,fN)
Root mean square (g) of X on the interval (fl,fN)
The complex variable of the laplace transformation (rad./sec)

Square of the magnitude of the frequency response function between
¢ and u (dimensionless), £ = X,¥,¥p G = /~1.)

Square of the magmtude of the frequency response function between
8 and u (rad./in.)2

Moment of inertia about an axis through the CM and perpendicular
to the plane of motion (Ib*sec2*in.)

Stiffness (lb/in.) of linear spring i, i = 1,2

Stiffness (Ib/in.) of elastic support of damper i in alternate model
(Fig. 15), i = 1,2

Lateral distance (in.) between model CM and the point at which
spring i is attached to the model, i = 1,2

Ly /Ly
Mass of component [lb/(in./secz)]
Radius of gyration (in.)

Lateral distance (in.) between model CM and point P (LP >0 or
LP < 0 according as point P is right or left of the CM)

fne/ fnx
Fraction of critical damping associated with translation

Fraction of critical damping associated with rotation
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NCORN

GCORN

ADB(i,i+1)
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Parameters appearing in the analytical representation of Gﬁ(f) on the

interval (fEX,i’ fEX,i+1)’ i=1,...,NSEG

Number of straight line segments in the log-log plot of the prescribed
base acceleration PSD

Abscissa (HZ) of the i'th "corner" point in the log-log plot of Gﬁ(f),
i=1,...NSEG+1

A positive integer specifying that "corner" point of the straight line
segment representation of the input base acceleration PSD on log-log
graph paper at which the value of the input base acceleration PSD

is given

The value (g2/HZ) of the input base acceleration PSD at the '"corner"
point specified by the integer NCORN

Rate of change, in decibels/octave, of the input basc acceleration

PSD as the frequency f varies from fEX,i to fEX,i+1’ i=1,...NSEG




APPENDIX A

SUBSIDIARY RELATIONS

2 2
Ry +£x

Re(M)}? + (Im(D)}>

T, (2] =

- 2 _ 2 2
RX = K1K2 (L1 + L2) [I(K1 + KZ) + CIC2 (D1 + DZ) 1 (2f)

QX =-1 (C1 + Cz) (21rf)3 + (21f) [(C1 + Cz) (K1 L12 + K2 Lzz)

2 2 - -
+ (K1 + K2) (ClDl + CZD2 ) + 2 (KlLl K2L2) (CZDZ ClDl)]

2 2
R9 +‘ge

{Re(D)}? + WIm(D)}

ion 12
lTe/u(zﬂ]f)] = 2

_ ) 2
Re =-m (K2L2 K1L1) (2nf)

_ ) 3
Yy = - m (CyD, - C,D)) (21f)

Re(D) = m I (2:H)? - [m (K1L12 + KZLZZ) + 1 (K, + Kp) + C,C, (D] + D2)2] (21f)

2
+ K1K2 (L1 + LZ)

= 2 2 2 2
Im(D) = [(C; + Cp) (KL% + K,L,D) + (K, + Kp) (C,D,% + ;0,5

2

2
+ 2 (KlLl - K2L2) (CzD2 - ClDl)] (27f) - [m (ClDl + C2D2 )

+1(C, +Cpl (2)°
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2 1 {1 9 2. 1
wic T 3 {T(K1L1 tKoLp™) + o (ky + Ky)

2

2 4K.,K, (L, +L,)

i 2 1 ) 172 "1 2
/[ (KL +KL2)+ (K1+K2)] — }

2 11 2
“’20“2‘{1“{1 (2 KLY + Ry Ky
2 4KK, L, +L,)
1 2 2y 4 1 B} 2
¥ /[1‘ (KLy ™ * Klp®) + 5 (K # Kz)] m }

fiC (UiC/ZTT 3 1= 1’2

2 K+ Ky

“nx ~ m

2 2

o _ K4l + KoLy

“ne © I

fnx = wnxlzﬂ

no = wnelzw
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FOUR ADMISSIBLE EXPRESSIONS FOR THE
UNDAMPED MODAL MATRIX (NON-NORMALIZED)

2

2 KL%+ KL,
“1C I
Kolg - KyLy
I
L
[ 2 2
o Kjly" + KoLy
“1C I
KoLy - KyLy
I
—
K,L, - KL,
m
2 Kt Ky
1C m
KL, - KL,
m
RIS
1C m

(KlLl ¥ K2L2 PRESUMED)

2

Yoc ~

K, L

I
5 )

K lLl“ + K,-,‘L.z"
I

olig =~ KLy
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|T

Ty

(2nif) |2 =

Ry - ReM} + (Y, ~Im(D)}?

y/u

(2njf) | =
P/u

{Re(D)}2 + (Jm(D)}2

{R, + LpR, - Re(D)}2 + {\(IX + Lp\ge —\dm(D)}2

{Re(D)}? + nIm(D)}>




APPENDIX B
ON THE CONSEQUENCES OF CERTAIN SPECIFICATIONS

When the coupling coefficients vanish simultaneously, that is, when K 1L -
K2L2 = 0 and ClDl - C2D2 = 0, the equations of motion, (1) and (2), assume their
uncoupled forms (B-1) and (B-2).

mx + (C, + Cy) X + (K; + Ky) x = (C; + Cp) u + (K; + K,) u (B-1)

2
1

2

2 _ -
1 +K2L2 )6 =0 (B-2)

X 2 .
Ie + (ClD + 02D2 ) 8+ (KlL
Upon inspecting equations (B-1) and (B-2), it is easily seen that the uncoupled

undamped natural frequencies and damping ratios satisfy

9 _K1+K2 . _Cl+C2
“nx ~ m ’ °x “nx ~ m ’
2 _1 2 2 21 2 2
whg = 1 (KL " + KoL,®) 5 2z w0 =7 (CiD;” + C,D,%)
If one imposes the conditions
Kiy=Ky » €1=Cy v Dy=Dy v gy =gy

and assigns values to m, p, w__, . rf, rL, where

nx

=f /f and

Ynx noe nx r'L = L1/1‘2

then some simple algebraic manipulation (bearing in mind the definition p = vI/m)

will show that the numerical values of Di’ Ci’ Li’ and Ki’ i =1,2, are determined by

D.
i

I
©
3
d
]
p—
-]

Q
i
Y
£
.
il

—

(W
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o
[V
H
©
H3
L}
/—\
=
o
(]
[S)
+ l
—t
V«
-
—
DO

If the condition D1 = D2 is replaced by Di = Li’ i = 1,2, the numerical values

of G;:(f), m, p, w ., Zy» Ty, and r; being prescribed as before, the expressions for
I’ Kl; K2’ C

Li’ i = 1,2, requires that Lg = g Ly In this case one will find

nx
1° C2’ Ll’ and L2 are the same as before, but the equality of Di and

3 4
K K
Tx/u(s)_év.:BKS IZAKS
K=0 K=0
4 2 2 3 2 2
A _wnx Le (1+rL) 2Cx Ynx Tf (1+rL)
0~ 2 ’ Ay = 2
2(1+rL) 1+rL
2 2
2 . 2p,°(1+r1,)
_ 2 2 x °f L _ 2
AZ_wnx 1+rf+ 3 . A3—2canx(1+rf) R
1+r
L
A4=1
B - A B, = A B, = A, - w2 12 B,=2c¢ u
0 0o 1 1 2 2 nx f i 3 X nx
3 4
— K K
Tou(® = 2 Yg S0 [ 2 Ap S
K=0 K=0
Yo =y, =0 \ o “nx L
0 1 ’ 2 P /—_——2' ’
2(1+1L)
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If neither the condition D1 = D2 nor the condition Di = Li’ i=1,2, is imposed,
while enforcing the conditions K1 = KZ’ C, = C2’ and prescribing the numerical

values of Gﬁ(f), M, p, Wpes Lys Tgs Tps s and rp = D1/D2, there is still no change

in the expressions for I, Kl’ Kz, Cl’ and Cz, but D1 and D2 will be determined by

] 2 o, g 1/2 i

= = D

g = P ) g 1~ p Y2
ax(1+rD)

In this special case, the transfer functions relevant to x, 6, and y are

3 4
_ K K
K=0 K=0
AK' = AK of the preceding paragraph for K = 0,3,4
r 1/2
A1=2gxw3nxrf rf+i—e—(1-rD)(1—rL)[ Cefz 2]
X ey (L+rp™) (1 +71p%)
2 g 2 7Tp byt 1+ rp)?
A, =w 1+r."+ -
2 nx f 1+ 2
Tp

BK' = BK of the preceding paragraph for K = 0,3
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3 4 «
- K A.'S
Tom(® = 2 vg' 8% 1 20 °K
K=0 K=0

YK' =Yg of the preceding paragraph for X = 0,1,2
1/2
. _ nx 2 b0 °x Tt
Yo' =— (1-r )| ———
3 b D 1+ r 2
D

4 4
— (] K ] K
Ty () = 2 B! S5 1 3 AL S
k=0 K=0
BK' = BK of the preceding paragraph for K = 0,1,2,4

Bg' = - 2 b Tt Ynx

It is worthy of note, insofar as economy of computer time is concerned, that the
moduli of the transfer functions of this and the preceding paragraph are unchanged
(for a specific value of the complex variable s) if both ry and ry are replaced by
their reciprocals. The same can be said of the transfer functions defined by equa-
tions (6), (7), and (8) when their numerator and denominator coefficients are such

as to meet specifications similar to those beneath Table 1.
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APPENDIX C

SAMPLE OUTPUT OF PROGRAM AUXRBM

On the following pages of this Appendix are two sets of mean squares and RMS's
of 3&, '6', é, 9, ir, and y as found by program AUXRBM in two computer runs, there
being seven cases processed in each run. In both runs ry assumes the values 2/3,
1.0, 1.05, 1.2, 1.5, 2.0, and 10, in turn, and

re = 0.1 , fnx = 100. (HZ) , Ty = 0.0r ,

5. (in.) , m=1.0 (b*sec2/in.)

f <o

A

Gi(f) = 0.1 (g?/HZ) for 0

In one run the conditions D1 = D2 and Di # Li (i = 1,2) apply, while in the other
Di = Li i=1,2).

Observe that in each run the output mean squares in case 5 duplicate those of
case 1, that being due to the fact that the values of rp and ry in case 5 are the
reciprocals of those in case 1. See Appendix B (last two sentences).

Notice also that the numerical results in case 2 of each run verify that 6 is
identically zero (assuming zero initial conditions) when the relations ClDl = CzD2 and
K1L1 = K2L2 hold.

The following table will serve to define the FORTRAN symbols appearing on the
AUXRBM printout.

Symbol X 6 810 |y rplTe K1 K2
FORTRAN Equivalent| XDD| TDD |[TD| T [YD| Y| R [ RF| K1 | K2
L1 L2 D1 D2 C1 02 RMS

L1 L1 D1 D2 C1 Cc2 RMS

-~
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APPENDIX D

SAMPLE OUTPUT OF PROGRAM TRROBM

The specifications Gﬁ(f) = 0.1 (gZIHZ), m=1.0 (lb*seczlin.), o = 5. (in.),

fnx = 100. (HZ), Ty = Lo = 0.01, K1 = K2, C1 = CZ’ D1 = DZ’ Di + Li i=1,2),
re = 2.0, 1. < f < 400., Af = 0.5, and
( 1.05, (Case 1)
1.2 , (Case 2)
r ={ 1.5 , (Case 3)
2.0 , (Case 4)
10. , (Case H)
-
led to the numerical values of I, Kl’ K2’ Ll’ L2’ Cl’ CZ’ Dl’ D2’ and other items

(with the exception of Lp) essential to the mean square computation, shown on the
input print which precedes the output print of program TRROBM. In each of the
five cases processed by TRROBM, the frequency interval (1., 400.) HZ was slightly
less in length than the recommended interval (1., 2f ) HZ, but the approximations
to the mean squares and RMS's were surprisingly good The reader should compare
RMS’ RMS’ RMS’ Y RMS’ YRMS’ and XRMS found in the output prmt with the
encircled values and inset tabular values, corresponding to rf = 2.0, in Figures 6
through 11.

The reader is due an explanation of the items appearing on the last page of the
output print for each case. As it pertains to matrices, the word adjoint has its
usual meaning, that is, the adjoint of a matrix is the transpose of the associated
matrix of cofactors. The 2 x 2 matrix identified as "ADJOINT CORRESPONDING TO
OMEGAI1C" is merely the adjoint of the characteristic matrix, to be defined subse-
quently, when the elements of the characteristic matrix are evaluated at w = wice
A similar statement applies to the matrix identified as "ADJOINT CORRESPONDING TO

OMEGAZC" (with w o replaced by wZC)' The characteristic matrix, here denoted by
Ch(H,m ), is given by

* The author has exercised the option to avoid printing all tabulated functions of
frequency.

0 - s . 6 9
“RECEDING PAGE BLANK NQGT FILMED




Ch(H,w?) = 42 _H

where H, known as the dynamic matrix, is defined by

the matrices M and K being, respectively, the system mass matrix and stiffness
matrix, that is [see equation (4) or (5)],

m 0 K. + K K.L. - K

1 ¥ By olig L

0 I K2L2 - KlLl K.L.” + K,L

The equation formed by setting the determinant of Ch(H,wz) to zero is a quadratic
in wz whose roots, “’1%3 and u)zé, are the characteristic values (or eigenvalues of H)
and also the squares of the undamped coupled natural frequencies. As the charac-
teristic vector (or eigenvector) of H corresponding to “’iZC’ one may choose any non-
zero scalar multiple of either column of the adjoint of the matrix Ch(H,wizc), i=1,2.
Program TRROBM selects the second column of the adjoint and the reciprocal of the
2,2 element as the scalar multiplier to get the vectors identified as "normalized"

characteristic vectors on the output print.

The vectors of the preceding paragraph could also be called modal columns of
the "undamped" modal matrix. Notice that the modal columns have been '"normalized"
in a certain fashion, the "fashion" indicated. The author has not declared that such
a normalization renders the modal matrix normalized with respect to the mass matrix.
If it is desired that the modal matrix be normalized with respect to the mass matrix,
one should select one of the four admissible expressions for the undamped modal
matrix®, here denoted by

%11 %12

%91 %92

*See Appendix A.
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and post multiply it by the diagonal matrix

1
0 Ny

where N1 and n, are computed by

2

np=m el 1ol L = moed, 1 g2yt

The expressions for ny and n, were found by simply demanding that the matrix

¥ = ¢n be such as to satisfy

[1. 0]
‘i’M‘l’=0 1.

71




3SvD

3Isvo

3Isvo

3ISVO

asvo

$ 0+00000006 " =d7
Z0+0000000} * =d’
T0+00000001 - =d
¢0+00000001} ° =d7
20+0000000}+ ~ =d1

1O0+8L901LOL”

041564 LOVL

1O+£GGSVCEY”

1O+1SYOvY8L”

1O+9VLGESOG”

LO+OLBILESGLE

00+00000006 ”

ca

(A

Z3

Z1

[

(A

4 v113a

1O+ESBIEBCY

90460Z6ECL01

90+60C6ELBL

90+60T6ELGI ~

90+60T6ELG}

90+6026€EL6!1

(4%

[a]

(4]

(2]

H

[

¢010000004¢C

VILA3IND 40 INIWOW

66L = N

86L
93S
00+00000001} * 00+000000014 -~
Xx3aandS
00000000
807130
00 +00000004 ° = NY029 b = NYOON
£0+0000000V * 1 0+00000001 -
X34
t = D3ISN
10+8L901 L0OL" = +d tO+E€GBIEBTY = 12
TO+1G661 LOVY = 40 90+60T6ELEY ° = A
co+iiibPacl = 7 90+60T6ELE6) ° = I
ZO+89699L1 ) ° = 10 90+60C6EL68 ° = A
¢O0+062T¥98BOL ° = 11 90+60T6€EL6Y ° = A
cO+LS8OVCOL = 11 90+60C6€EL61 ~ = A
1 0+0000000! * = SSVNW

72




(P +OISNI X34 (1 )XA4)

IVAAIINT JATIND 3HL 0L ININILY3d AV 3ADGV S, SWA UNV SH3VNOS NVIW LOVX3 3IHL

( NI) LO+LLTSGBLY S = (L10VX3) INAWIOVIdSIO INdNI 410 SWyd

(C+aNI) 101160 EEIES = (10VX¥3) UINJW3ISVIIS LA INdNI 40 3AVN0S NV IR
(03S/NI) CO+6CZLOYEL - = (LOVXd) ALIDOTI3IA INdNI 30 Swd
(Z2+-(D235/N1)) EOtRS0L99LE" = (10vx3) ALID0TIA INGNE 40 JAVNOS NV W
(S5.9) 1O+LVYYO91IE9” = C10VXI) NOTLIVAEITADOOV INJINT 40 SKWA

(Z++9)  ZOrO000ONELE ” = (JOVX3) NOLEVAF IOV (NJINT 40 3AVvVNOS MV IW

73




ONV dA N33IM133 NOILONNA 3ISNOAS3Id ADNINO3IYI 3JHL 40 INIVA I1NTI0SEV IHL 40 JAVNOS 3HL SILONIA TH+((NBJIAH)ISEV)
N GNV A N3IIM1J9 NOIIONN4 ISNOLSIF AONING3IYL 3HL 40 INIVA 3iN70S8V IHL 40 JUVAOS 3FHL SILONIA T+ ( (NBAH)SAV)
N ONV L. N33M1338 NOILONNd 3SNOGS3d ADNINO3Y4 3HL 40 INIVA 3I1N10SAv 3IHL 40 33vN0S 3IHL SILON3Q N>*AADﬂthwmqv
N AGNV X N33M138 NOILONNY ISNOdSIA AONINGIYYS IFHL 40 3NTIVA FLNT0SHV IHL 40 33vNOS FHL SILONIQA T++((NBXH)SGV)

(S.,9) 3SvE 3JHL 0L 3IATLVIIY d INIOd 40 NOILvd3T300V 3IHL S3ILON3A 4adA

(23S/S3HONI) 3ISvE 3H1 01 3ATLVIIY d INIOd 40 ALIDON3IA 3IHL SILON3IA QdA

(S3IHONI) 3ISvd dH1l WOU4 d INIOd 30 AINIWIOVIdSTA FATLVIIY 3IHL S3ILONIQ dA

(S.9) 35v8 3FHL 01 3IATLIVIIY WO 3HL 40 NOILVYINIOOV 3HL SILONIA TaA

(23S/S31ONI) 35vd d4HL Ol IATLVITL WO 3HL 40 ALIDOTI3A 3HL S3L0ON3IA AA

(S3HONT) 3SvEa 3HL WOY4 WO 3HL 40 INIW3IOVIISIA 321Lv13d 3FHL SILONIQ A

(2++03S/0QVd) SSVW 3dHL 40 NULLVA31300V avINONV IHL SILION3IU Adi

(235/0avy) SSVW IHL 40 ALIDOTNIA UVINONV 3IHL SILON3IQ ai

(SNVIAVY) SSViW 3HL 40 INJWIOVIdSIA dVINONV 3HL S3L0N3A L

(S,9) WO 3FiiL 40 NOITLva3I13I00V MVNOTIVISKNVAL 31N0710S8v 3HL SILONIA aax

(O3S/5%3HONT ) WO 3HL 40 ALIDOTI3A IVNOILLV ISNVAL 41010549V 3HL S$310N3Iad 4K

(S3HONT) WD 3HL 40 INIWIOVIASIA TVNOILIVIISHvEL 31071058V dHL SILONIA X

(S,9) 3Sva IHL 40 NOL11Vy3I1400Vv 4111088V JHL SILON3ICG ddn
(D3S/S3HONT ) devd dHL 10 A1 ED0 138 1101089V 3HiL S3TONAG an !
I
|

COINDML )Y Juvd a0 WY L ta 1rnosay il S1tONIG N

74



WIHL

o/

B
DAY

(ZH) £0+0060000C° = VI3JHLINJ

N\

(ZH) £0+18661000C"

¢o4

(Zit) £O+00OHODHOL - = /M4

(ZH) CO+99£0C9666°

cO+16968G6¢0°

COvLELOVLLY

10-981L6C8BC°

042851 98T

CO+6RTGBILL

LO-966V0PLET

Cc0+9CZv8G8CY”

LO-2Zv66189°

]

v -GGGV YE S

Z20+9195008¢C"°

CO+6259vCYcT”

LO+EBLSLLEE

L O+000008014 -

= (Jd\ 40
- QdA 10
= dA 40

aie do
= Qx40
= A 40
- udt 40
= a1 40
- 1 40
= Qdx 40
= QQx 30
= X 40

11430 SIVEDIALINT JLINILIO 3HL O Q3TNddy 37Ny IvAIOZ 34vdl

= g1/

(I ]

SWY

Sid

SWY

SWd

SWY

Sk

SWd

Sk

Swt

S3ITONINGIAYA

SIIONINOIYY

£0+/,606G5CL8°

€O108CLOSIE

CO-5208L00s°

E5+986.L981 3

EO+IGPELGBL

£Q-08BEEOI QLT

vO+OBYLEOQLL S

CO-LOLICBOY

80 9o.lCiCcEY’

E0+IGPIEPEL”

€016C088Y89

LO+BPBS0OLEBE

TvdinlvN G374N00ONN G3dWVANN

IV3N1LYN 037d4N0D3 A3I4dWVYANN

agdA 40
dadAr 40
dA 40
aga 49
aAr 40
A 10
aas 40
4l 40
1 40
aax 40
ax 40
b4 40

IHL VA Q3LNIW0D Jd3m m(138

1 0+00000007 " = XNd4/VL3HINI

33vnos

JAVNOS

33vNOS

NIVNOS

3AVNOS

TAVAOS

34vNOS

IHYNOS

JHVNOS

AVNOS

3AvNOS

3dYNOS

NV3IW

NV3W

NV3W

NV3W

NV3IW

NvIW

NV IN

NV IR

NV3IW

NV3IW

NV 3IW

NV 3N

$3YvNGS NVIW AHL

I 3SvO

75




(SNV1Qvy) 1 0+00000001 °

(S3HONI) +0-L0CGGCI8 -
JTVLINW0 0L ONIONOCSIYH0D JOLI3A DILSIYILOVEVHO ,,03IZITVWION, ,

{SNviavd) 10+00000001 -

(S3HONI) EO+1LB6G9L0E"
DIVOIW0 0L HNIANOJSIYA0ND d0123A DIL1SIHILOVUVHD ,,AQIZITVHAON, ,

LO+vS99v8LY T vO+v60r0S8E -
GO+¥ETO9TI96 - €£0+00SL8BCIE
OZVOINO 01 ONIANOdSIYA0D INIOrQv

€O+168LBZIE - PO+¥60VOSBE " -
GO+VECZ09CA6 - LO+PGO9PBIL ™ -
OIVOIWO 0L SNIGNOdSIHA0D INIOrav

76




(ZH) €£0+0000000T° = V13HINI (ZH) €£0+0000000L " = XN4
(ZH) €0+50ZLZOOZ" = ¢O4 (ZH) TO+6EOVSPES™ = 104
ZO+OV66I6IE™ = 0GJA 40 SWY
ZO+6ESEITEL " = OdA 4D SWA
d.
‘or="7 10-286ZTLOE" = dA 4D SWY
Y

2 m ZO+PLELEEBZ™ = QOA 40 SWH

<]
O & -
< o TO+00T660LL " = GA 40 SW

g

Mm 10-2€890VLZ" = A 40 SWi

[&]
= m £0+94GLZVZC" = (0L 40 SWY

a
O0+LBYEVZSZ® = QL 40 SWY
= €0-LB0IP6¥PE" = L 40 SWY

S0 =4

end s FF / ZO+L90STLLT” = 0OQX 40 SWY
ZO+¥ZZO619Z° = QX 40 SWi
bO+BETSLLEL" = X 40 SWA

WIH1 ONINII3Q SIVIDIINI ILINI430 3HL Ol Q317ddVv 27Ny 1vAI10Z3dvil

1 0+0000002+ ° = ¢1/11

SIIONINOIY4 TVANLYN 03TdNOINN A3dWYONN

¢ SIION3INOIYS TVINLYN a3NdN0D QIAWVANN

vO+1LL0OTZCOL "
.m0+0-0®—mwn.
€0-19106EV6 "
£0+6L0V0E08’
€0+29¢8ECT6LT
EO-IPPELIGL”
G0+L196620SG°
LO-EQEETLEYD”
90-96.80CC1} °
€0+GE6.989L"°
E0+EBLTH6G8S

+O+E00901 6E°

Ll

[}

L]

aadA 40 33vnOS

adA

dA

aaa

aa

aatL

a1

aax

ax

40

40

40

40

40

40

40

40

40

40

40

3¥vNOS

34vNOS

3YvVNOS

34VNOS

JAVYNOS

3AvNOS

3JVYNOS

JYvNOS

33vNOS

3AVNOS

3dvNOS

NV3IW

NV3InW

NViIN

NVIN

NV3IW

NV3INW

NV3W

NV3IN

NVIN

NV3IW

NVIW

NV3IN

JHL VIA Q3L1NdWOD 3d3M M0138 SIUVNOS NVIW 3IHL

+ 0+0000000Z °

s YNJ/VLIHINS

4

3svo

(i



<& Lo

ST TN

(

(SNVIAvY) 10+000000014 °

(S3HONI) OO+vPr6900E " -
JCVO3W0 01 ONIAGNOdSIAA0D JO0LD3A DILSTHILOVIVHI ,,03IZITVWAUON, ,

(SNvIQvd) 10+000000014 -

(S3HONI) cO+6260VIESB”
OIVD23W0 OL ONIONOJS3YE0D ¥O1ID3A JILSTAILOVIVHO ., ,Q3ZITVWAON, .,

LO+51 G988} " S0+9€896CV1 -
90+160CPLGE - PO+1ES686CY "
JZVO3W0 0L ONIAGNOdSIYI0D INION,rQv

rOt99.686Cr -~ GO+9€E8962ZVI " -
90+160CPLGE - LO+S1G9881) " -
J1VOIW0 0L ONIANOdSIJI0D INIONrav

78




(ZH) €£0+0000000C" = V13HINA {ZH) €0+0000000} - = XN4
(ZH) €0+069GT10T" = TOd (ZH) ZTO+899SYY¥L6" = +24d
CO+9L6EIESE " = QQdA 40 SWi
o co+zLv86CIT” = 0dA 40 SWH
‘01= 7
10-90PSLGYE " = dA 40 Swd
TorLESLBELL S = QQA 40 SwWd
CO+C899LL91 = QA 30 Swd
10-88L¥PYLT” = A 40 SWJ
E0+v98L6L LY = 001l 30 SWi
O0+9E6ETIES” = AL 40 SwWi
€0-81¢089vL" = 1 40 SWY
’ =
S 0=SP
. ¢0+82049992 = 00X 40 SWi
0os > FF /
CO0+S9.086GC = ax 40 SwWy
LO+EOPSLLGBY = X 40 SWY

W3HL ONINI43Q STVYDILINI 3LINIL3AQ 3IHL OL Q3I7ddv 3TNY TvaloZ3dvidl

1 0+000000G! ~

= T/

SITONINDIA4 TVANLVYN dITdNOONN QIJWVYANN

SIIONINO3IAS TIVINLYN G37dNOD QIJAWVYANN

v0+80190GT} °

£0+06P29€ESY °

TO-L8GYS6LY °

E0+TGGSISPL”

€0+L0LSPIBT

£0-9vEBIESGL”

20+0019LC2C "

00+9cCS1Ce8e”

90-0SEILLSS "

£0+2v0OLBOIL"

€0+¥10006L9 "

+0+959901 6€ °

aadA 40 JYVYNOS NVIW

QdA

dA

aga

aa

gal

a1

aax

ax

40

40

40

40

40

40

40

40

40

40

JIVNOS

I¥vnoS

3AVNOS

3¥vN0S

3AVYNOS

34vNOS

JAVNOS

33vNnOS

3JVYNOS

33vNOS

IJVNOS

NV3IW

NV3N

NVIN

NV3IWN

NV 3IW

NV3W

NV3NW

NV3IW

NVIN

NV3N

NV3W

IHL VIA Q31NdWOD I¥IM M0138 S3IVNOS NVIW 3HL

10+66666661 ° = XN3/V13HINI

79




& Iswo

(SNVIQVY) | 0+00000001 -

(S3IHONI) O00+ZZTI6ZYY " -
JTVO3IW0 01 HNIANOdSIHA0D ¥OLOIA DILSIAHILIVIVHO ,,A3ZITVWAEON, ,

(SNVIavy) 10+0000000} °

(S3IHONI) TO+E¥SG888E"
JIVOIW0 0L DONIAGNOCSIHAOD A0LDIA OI1SIHILOVAVHD ,,QIZITVWAON, .

LO+LEITYOTI - GO0+61¥6960¢E " -
90+LYSECYLL - S0+6090166) °
OCVIO3IW0 01 ONIANOdSIHH0D INIONrav

G0+GZ901661 - GO+61v6960€E° -
90+L¥GECYLL - LO+1E9CZYOCH -
JIVDIW0 OL SNIUNOdS3IYY0D INIONrQv

80




(Z+H) €0+0000000¢ " = VI3IHINA

(ZH) €0+061 LIEOT" = o4

W3H1 DONINTA30 SIVAOILINI IFLINIJ3IQ 3IHL 01

(ZH) €0+000000GOL ~

(ZH) CTO+GSTLBEEG "

¢0+66L9L6LE "

¢G+95e69lLe

10-9961 868€ °

CO+CE9SOPST

¢0+G1 190291 -

10-8£9L89¢L¢C

£E0+118960CL”

O0+LE0IGHEB

CO-68vI6LI -

co+eciicLve”

CO+8E£6G1 98T

LO+06LSLLEY -

G317ddv 37N

O+ 1 GO0OO0C *

= dada

ada

dA

L

= Jaa

= aax

= JX

= XN4

= 404
40 S
40 SWi
10 SKHY
40 Swd
40 Sid
40 Swa
40 Sivd
40 SWd
40 Shy
40 SWY
40 SwWy
40 SwWd

valoZidval

CA/ 47}

SIIONINDIAS IVANIVN AITINOINN QISWVANN

SIION3NOIY4 TVANLVN Q3TN0 AIJWVYANN

voreLeCeYYL

EOtYPYVIBUESG”

NO-ﬁmmmm_M—.

EOHLIOVYGYO”

£0+918€£9C9C"

EOQ-96¥P6PIL”

90+¢0G6L61 5

00+606v58G69 °

G0-9v6€E0bE} -~

CO+EBEEL L9

€0+8TYLI9G9”

+0+981 801 6E°

aada

adX

dA

aaa

us

aail

Gt

40

40

40

40

40

40

10

40

40

40

40

40

JAUVNOS

IIVNOS

JAVNOS

3avNos

3AVN0S

3A4VNOS

33VNOS

33VvNOS

3AVNOS

JAvNOS

JAVNOS

IAVNOS

NV3IW

NV iIw

NVIW

NV Ik

NV IR

NVIW

NV3IW

NV 3N

NV IW

NV 3IW

NV3W

NV3IK

AHL VIA G3LNdWOD Jd3M MOTIAE SAAVNOS NVIEIW dAHl

+ 0 +00000N0T ° =

XNA/VIIHING

81




JCVO3IW0 0L

J1VvO3IW0 Ol

(SNVIAVY) 1 0+0000000} °

(S3HONI) 10+5966040} " -
HN1ANOdS IAH0D J0LD3A DTLSTIAILOVEVHD ,,A3ZITVWION, ,

(SNVIQvd) 10+00000004 °

(S3HONI) <CO+9L08CLVCT"
ONTANOdS 3AU0D d01D23A OILSTYILOVIVHD ., ,Q3IZITVIWION, ,

LO+PBEBVETH ” SO+1699€E66V ° -
LO+ELIYBYTE - GO+L6LS8BVOS’
OCVOIW0 0L ONIANOJIS3IYA0D LINIONrav

SO+vCBGBYOS - GO+1699EE6V " -
LO+ELIVBYTI "~ LO+VBEBYECH ™ -
21 VHIWO 01 SNTANNCSIHHOD AINIONrQv

82




{ZH) E£O0+00D0VV00C” = VidHLIMJ (ZH) £€0+000000O -~ = XN4 D S3ITON3N0O4Ys IVANLYN G37dN0OONN G3dWVONN
(ZH) €0+0Li92L1¢C = €04 (ZH) 20+9000L2EL” = +24 TOSIIONINOIAS TvHNLYN d31dN0D d3dWVaNN

CO+1 199188 = (Q4dA 40 SWdA COtivLIE6Y9989° = A@ddA 40 3AVNOS NVIW

C¢O+1rL0C9L6l = ddA 40 SWd £0+9G6E60uC = UdA 40 FUYVOOS NVY3IW

. d.

’“ = V 1O-L0GESI9CY = dA i0 Swd cO-91eLel B = dA 40 3d4VvNOS NVIW
c0+¢9901 884 - = Gd, 40 SWd CO+OGIYBELE = 0aA 40 3AVN0S NVIW
¢0+0v38CPYi -~ = da 40 SWdA €089V LLI0T = QA 40 3¥VvNOS NY3W
10-8p20CCHE" = A 40 Swi £O-16C0LVLE” = A 40 2AVN0S NV4W
vO+6v9L3Lit = adL 40 SKWd LO+GZL088EL " = adl 40 33vNOS NVIW
10+5LE£29C€} 7 = QL 40 SWi LO+050685L1 = QL 30 3avN0S NVIW
CO-1E00COECT = 1 10 SWd GO-8B8596L6G6" = 1 40 33vN0OS NV3IW

Cﬂ 2 itnw ZO+.L886BLBLI = (4x 40 Swi EO+LE0B96LE = gax 40 32vNOS NVaW
.m;nu\v V..\ V.. \ C0+66GLIGPT = (dx 40 SWJ EOrGSCHLIOY = aX 40 3HvNOS NV3IA
LOFGTIOLLEY = X 30 Shd VOreLEICIBE = X 20 JAVNOS NVINW

W3HL ONINIJIQ SIVAOILINI ILINIZAQ 3HL OL G3I1ddV 31NY AI0ZIgvdl FHL VIA GILINDWCD Faim X0138 SAAVAOS NYIW IHL

104166666666 ° = ¢/47 O+ 000LC00T = Rl d/ VDIt G 3%V

83




<& Irvo

\

Al

~

(SNVIQvd) 10+000000014 °

(S3IHONI) 10+42088C8 " -
DZVOIW0 0L HNIONOJSIHA0D J0LID3IA DILSTH3ILOVIVHD ,,A3ZITVWION, ,

(SNviIavd) 10+0000000} -

(S3IHONI) CTO+P6ECLOE}
J1VD3IN0 01 SNTANOESIAY0D ¥0LI3IA JTLSIYIALOVEVHD . AIZTTVWAON. .

LO+0L64 LOE} G0+90696666 " -
LO+L2Z666VC - 90+ESYPBCBL-
JZVOIN0 OL SNIANOdSIFA0D LINIOrav

90+v6yYyBZBI - G0+906966€6 -
LO+LTZ666VT - LO+ILE6LLOEL -
J1VDIW0 0L DNIANOGSIYE0D INIOrQv

84




APPROVAL

COMPONENT RESPONSE TO RANDOM VIBRATORY MOTION
OF THE CARRIER VEHICLE

By L. P. Tuell

The information in this report has been reviewed for technical content. Review
of any information concerning Department of Defense or nuclear energy activities or
programs has been made by the MSFC Security Classification Officer. This report,
in its entirety, has been determined to be unclassified.

AW g

G. F. McDONOUGH v
Director, Structures and Dynamics Laboratory

85




TECHNICAL REPORT STANDARD 11iLE PAGE

1. REPORT NO. 2. GOVERNMENT ACCESSION NO. 3. RECIPIENT’S CATALOG NO.

NASA TM-100309

4. TITLE AND SUBTITLE $. REPORT DATE

Component Response to Random Vibratory Motion :;:;;&‘927“6“'2”'0“ —oE
of the Carrier Vehicle 6.

7. AUTHOR(S) 8. PERFORMING ORGANIZAT!ON REPORT #
L. P. Tuell

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO.

George C. Marshall Space Flight Center 11. CONTRACT OR GRANT NO.

Marshall Space Flight Center, Alabama 35812

13. TYPE OF REPORY & PERIOD COVERED

12. SPONSORING AGENCY NAME AND ADDRESS

Technical Memorandum
National Aeronautics and Space Administration

Washington, D.C. 20546 14. SPONSORTNG AGENCY CODE

15. SUPPLEMENTARY NOTES

Prepared by Structures and Dynamics Laboratory, Science and Engineering
Directorate.

16. ABSTRACT

Two physical models of component plus supporting substructure are considered.
Each model consists of a rigid body attached to a moving base by means of linear
springs and viscous dampers. The second model differs from the first in that its
dampers are elastically supported. The first model receives the more extensive
treatment. Base motion, assumed a random translational motion parallel to a fixed
axis, is prescribed only to the extent that the power spectral density (PSD) of its
acceleration is given; and, as given, its plot on log-log graph paper is a series of i
straight line segments, each segment having an extremity in common with the
adjacent segment. Closed expressions are given for the mean squares of base accel- !
eration, base velocity, and base displacement. The component is restricted to planar ‘
motion and allowed two degrees of freedom, one translational and one rotational.
Integral expressions are given for the mean squares of component response variables,
the transfer functions essential to mean square computation being available via the
equations of motion. Closed expressions are given for mean squares of certain of the
response variables for the case wherein the base acceleration PSD is constant. A
very brief paragraph is given to stability of motion.

17. KEY WORDS 18. DISTRIBUTION STATEMENT

L Unclassified — Unlimited
Random Excitation

Response to Random Excitation

19. SECURITY CLASSIF, (of this report) 20. SECURITY CLASSIF, (of this page) 21. NO. OF PAGES | 22. 'PRICE

Unclassified Unclassified 87 NTIS

MSFC - Form 3292 (May 1969) ‘ - —
For sale by National Technical Information Service, Springfield, Virginia 22151



